Rastru grafikas algoritmi Elipses līnijas veidošanas algoritms

Ellipse-Generating Algorithms

### Ellipse-Generating Algorithms



• The sum of the two distances d<sub>1</sub> and d<sub>2</sub>, between the fixed positions F<sub>1</sub> and F<sub>2</sub> (called the foci of the ellipse) to any point P on the ellipse, is the same value, i.e.

$$d_1 + d_2 = \text{const}$$

### Ellipse Properties

Expressing distances  $d_1$  and  $d_2$  in terms of the focal coordinates  $F_1 = (x_1, y_1)$  and  $F_2 = (x_2, y_2)$ , we have:

$$\sqrt{(x-x_1)^2 + (y-y_1)^2} + \sqrt{(x-x_2)^2 + (y-y_2)^2} = \text{constant}$$



Polar coordinates:

Cartesian coordinates: 
$$\left( \frac{x - x_c}{r_x} \right)^2 + \left( \frac{y - y_c}{r_y} \right)^2 = 1$$
Polar coordinates: 
$$x = x_c + r_x \cos \theta$$

$$y = y_c + r_y \sin \theta$$

# Ellipse Algorithms

- Symmetry between quadrants
- Not symmetric between the two octants of a quadrant
- Thus, we must calculate pixel positions along the elliptical arc through one quadrant and then we obtain positions in the remaining 3 quadrants by symmetry



# Ellipse Algorithms

$$f_{ellipse}(x, y) = r_y^2 x^2 + r_x^2 y^2 - r_x^2 r_y^2$$

#### Decision parameter:

$$f_{ellipse}(x, y) = \begin{cases} <0 & \text{if } (x, y) \text{ is inside the ellipse} \\ =0 & \text{if } (x, y) \text{ is on the ellipse} \\ >0 & \text{if } (x, y) \text{ is outside the ellipse} \end{cases}$$



$$Slope = \frac{dy}{dx} = -\frac{2r_y^2 x}{2r_x^2 y}$$

# Ellipse Algorithms

• Starting at  $(0, r_y)$  we take unit steps in the x direction until we reach the boundary between region 1 and region 2. Then we take unit steps in the y direction over the remainder of the curve in the first quadrant.



At the boundary

$$\frac{dy}{dx} = -1 \implies 2r_y^2 x = 2r_x^2 y$$

therefore, we move out of region 1 whenever

$$2r_y^2 x \ge 2r_x^2 y$$

# Midpoint Ellipse Algorithm



Assuming that we have just plotted the pixels at  $(x_i, y_i)$ .

The next position is determined by:

$$p1_{i} = f_{ellipse}(x_{i} + 1, y_{i} - \frac{1}{2})$$

$$= r_{y}^{2}(x_{i} + 1)^{2} + r_{x}^{2}(y_{i} - \frac{1}{2})^{2} - r_{x}^{2}r_{y}^{2}$$

If  $p1_i < 0$  the midpoint is inside the ellipse  $\Rightarrow y_i$  is closer If  $p1i \ge 0$  the midpoint is outside the ellipse  $\Rightarrow y_i - 1$  is closer

# Decision Parameter (Region 1)

At the next position  $[x_{i+1} + 1 = x_i + 2]$ 

$$p1_{i+1} = f_{ellipse}(x_{i+1} + 1, y_{i+1} - \frac{1}{2})$$

$$= r_y^2 (x_i + 2)^2 + r_x^2 (y_{i+1} - \frac{1}{2})^2 - r_x^2 r_y^2$$

#### OR

$$p1_{i+1} = p1_i + 2r_y^2(x_i + 1)^2 + r_y^2 + r_x^2 \left[ (y_{i+1} - \frac{1}{2})^2 - (y_i - \frac{1}{2})^2 \right]$$

where 
$$y_{i+1} = y_i$$
 or  $y_{i+1} = y_i - 1$ 

## Decision Parameter (Region 1)

Decision parameters are incremented by:

$$increment = \begin{cases} 2r_y^2 x_{i+1} + r_y^2 & \text{if } p1_i < 0 \\ 2r_y^2 x_{i+1} + r_y^2 - 2r_x^2 y_{i+1} & \text{if } p1_i \ge 0 \end{cases}$$

Use only addition and subtraction by obtaining

$$2r_y^2x$$
 and  $2r_x^2y$ 

At initial position  $(0, r_y)$ 

$$2r_y^2 x = 0$$
$$2r_x^2 y = 2r_x^2 r_y$$

$$p1_0 = f_{ellipse}(1, r_y - \frac{1}{2}) = r_y^2 + r_x^2 (r_y - \frac{1}{2})^2 - r_x^2 r_y^2$$
  
=  $r_y^2 - r_x^2 r_y + \frac{1}{4} r_x^2$ 

### Region 2

Over region 2, step in the negative y direction and midpoint is taken between horizontal pixels at each step.



Decision parameter:

$$p2_{i} = f_{ellipse}(x_{i} + \frac{1}{2}, y_{i} - 1)$$

$$= r_{y}^{2}(x_{i} + \frac{1}{2})^{2} + r_{x}^{2}(y_{i} - 1)^{2} - r_{x}^{2}r_{y}^{2}$$

If  $p2_i > 0$  the midpoint is outside the ellipse  $\Rightarrow x_i$  is closer If  $p2i \le 0$  the midpoint is inside the ellipse  $\Rightarrow x_i + 1$  is closer

# Decision Parameter (Region 2)

At the next position  $[y_{i+1} - 1 = y_i - 2]$ 

$$p2_{i+1} = f_{ellipse}(x_{i+1} + \frac{1}{2}, y_{i+1} - 1)$$

$$= r_y^2 (x_{i+1} + \frac{1}{2})^2 + r_x^2 (y_i - 2)^2 - r_x^2 r_y^2$$

OR

$$p2_{i+1} = p2_i - 2r_x^2(y_i - 1) + r_x^2 + r_y^2 \left[ (x_{i+1} + \frac{1}{2})^2 - (x_i + \frac{1}{2})^2 \right]$$

where  $x_{i+1} = x_i$ 

or

$$x_{i+1} = x_i + 1$$

11

# Decision Parameter (Region 2)

Decision parameters are incremented by:

$$increment = \begin{cases} -2r_x^2 y_{i+1} + r_x^2 & \text{if } p2_i > 0\\ 2r_y^2 x_{i+1} - 2r_x^2 y_{i+1} + r_x^2 & \text{if } p2_i \le 0 \end{cases}$$

At initial position  $(x_0, y_0)$  is taken at the last position selected in region 1

$$p2_0 = f_{ellipse}(x_0 + \frac{1}{2}, y_0 - 1)$$

$$= r_y^2 (x_0 + \frac{1}{2})^2 + r_x^2 (y_0 - 1)^2 - r_x^2 r_y^2$$

12

### Midpoint Ellipse Algorithm

1. Input  $r_x$ ,  $r_y$ , and ellipse center  $(x_c, y_c)$ , and obtain the first point on an ellipse centered on the origin as

$$(x_0, y_0) = (0, r_y)$$

2. Calculate the initial parameter in region 1 as

$$p1_0 = r_y^2 - r_x^2 r_y + \frac{1}{4} r_x^2$$

3. At each  $x_i$  position, starting at i = 0, if  $p1_i < 0$ , the next point along the ellipse centered on (0, 0) is  $(x_i + 1, y_i)$  and

$$p1_{i+1} = p1_i + 2r_y^2 x_{i+1} + r_y^2$$

otherwise, the next point is  $(x_i + 1, y_i - 1)$  and

$$p1_{i+1} = p1_i + 2r_y^2 x_{i+1} - 2r_x^2 y_{i+1} + r_y^2$$

and continue until  $2r_y^2x \ge 2r_x^2y$ 

### Midpoint Ellipse Algorithm

4.  $(x_0, y_0)$  is the last position calculated in region 1. Calculate the initial parameter in region 2 as

$$p2_0 = r_y^2 (x_0 + \frac{1}{2})^2 + r_x^2 (y_0 - 1)^2 - r_x^2 r_y^2$$

5. At each  $y_i$  position, starting at i = 0, if  $p2_i > 0$ , the next point along the ellipse centered on (0, 0) is  $(x_i, y_i - 1)$  and

$$p2_{i+1} = p2_i - 2r_x^2 y_{i+1} + r_x^2$$

otherwise, the next point is  $(x_i + 1, y_i - 1)$  and

$$p2_{i+1} = p2_i + 2r_y^2 x_{i+1} - 2r_x^2 y_{i+1} + r_x^2$$

Use the same incremental calculations as in region 1. Continue until y = 0.

- 6. For both regions determine symmetry points in the other three quadrants.
- 7. Move each calculated pixel position (x, y) onto the elliptical path centered on  $(x_c, y_c)$  and plot the coordinate values

$$x = x + x_c$$
,  $y = y + y_c$ 

## Example

| i | $p_i$ | $x_{i+1}, y_{i+1}$ | $2r_y^2x_{i+1}$ | $2r_x^2y_{i+1}$ |
|---|-------|--------------------|-----------------|-----------------|
| 0 | -332  | (1, 6)             | 72              | 768             |
| 1 | -224  | (2, 6)             | 144             | 768             |
| 2 | -44   | (3, 6)             | 216             | 768             |
| 3 | 208   | (4, 5)             | 288             | 640             |
| 4 | -108  | (5, 5)             | 360             | 640             |
| 5 | 288   | (6, 4)             | 432             | 512             |
| 6 | 244   | (7, 3)             | 504             | 384             |

$$r_x = 8$$
,  $r_y = 6$   
 $2r_y^2 x = 0$  (with increment  $2r_y^2 = 72$ )  
 $2r_x^2 y = 2r_x^2 r_y$  (with increment  $-2r_x^2 = -128$ )

#### **Region 1**

$$(x_0, y_0) = (0, 6)$$
  
 $p1_0 = r_y^2 - r_x^2 r_y + \frac{1}{4} r_x^2 = -332$ 

Move out of region 1 since

$$2r_y^2x > 2r_x^2y$$



## Example

#### Region 2

$$(x_0, y_0) = (7, 3)$$
 (Last position in region 1)

$$p2_0 = f_{ellipse}(7 + \frac{1}{2}, 2) = -151$$

=0

| i | $p_i$ | $x_{i+1}, y_{i+1}$ | $2r_y^2x_{i+1}$ | $2r_x^2y_{i+1}$ | _         |
|---|-------|--------------------|-----------------|-----------------|-----------|
| 0 | -151  | (8, 2)             | 576             | 256             | _         |
| 1 | 233   | (8, 1)             | 576             | 128             |           |
| 2 | 745   | (8, 0)             | -               | -               | Stop at y |

